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Abstract 

Let S(k; f) = Sq(2k-‘f) . Sq(2k-2f). . . Sq(2f) . Sq(f) in the mod-2 Steenrod algebra d*, 
and let x denote the canonical antiautomorphism of d*. Given positive integers k, A and j with 
1 < j 5 A, we prove that 

xS(k; 2” - j) = s(n - (j - 1); 2j-1(2k - i 1) . X~(k; 21-l - j), 

generalizing formulae of Davis and the author. Our proof relies on the “stripping” action of the 
dual Steenrod algebra J& or &* itself, which we identify as a special case of a general Hopf 
algebra phenomenon. 

Given a positive integer f, denote by p(f) th e minimal number of summands in any repre- 
sentation of f in the form x(2’” - 1). The antiautomorphism formula above implies that for 

f = 2” - j, 1 5 j 5 A + 2, the excess of xS(k; f) satisfies ex(XS(k; f)) = (2k - l)p(f) for 
all k, confirming the conjecture of the author (Silverman, 1993) for such f. We also prove that 
ex(XS(k;f)) 5 (2k - 1)/~(f) for all f and k. @ 1997 Elsevier Science B.V. 

1991 Math. Subj. Class.: Primary 55305, 55SlO; secondary 57T05 

1. Introduction 

1.1. Informal statement of results 

The mod-2 Steemod algebra d* is multiplicatively generated by the Steenrod squares 

Sq(i) in dimension ISq(i)l = i, 0 5 i < 00. The product Sq(al). . .Sq(a,) is admis- 

sible if ai 2 2ai+l for i < n, and a, > 0 if n > 1; the admissible elements form 

an additive basis of d*. The excess of the admissible element Sq(al ) . . . Sq(a,) of 
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dimension d is given by Cyr: (ai - 2ai+i) + a, = 2a - d [15]. In general, the excess 

of a sum of admissibles is the minimum of the excesses of the summands. 

We write 

S(k; f) = sq(2k-‘f) . sq(2k-2f). . eSq(2f) . Sq(f) 

and apologize for the change in notation from [lo]. The dimension IS(k; f)l = (2k- 1 )f 

and the excess ex(S(k; f)) = f. 

The Steenrod algebra is a connected Hopf algebra, and as such has a unique an- 

tiautomorphism, commonly denoted by x [5]. Following [16], we write 6 for ~8. In 

particular, $q(a) = #q(a) and $k; f) = xS(k; f). 

In Section 6, we prove the following antiautomorphism formula, generalizing results 

of [2, 101: 

Theorem 1.1. Let k and A be positive integers, and suppose that 1 5 j 2 /i. Then 

&k;2” -j) = S(A -(j - l);2i-1(2k - 1)). $(k;2j-’ -j). 

The Steenrod algebra d* acts on IFz[xi , . . . ,xs] according to well-known rules. 

The image of this action, i.e., the set of polynomials which can be written F = 
xi,0 Sq(i)Fi, is related to various entities of importance in algebraic topology; among 

these are Ext$ (iF2, IF2) [13] and cobordism classes of closed manifolds [9]. In addition, 

this image contains information about the simple representations of the general linear 

group GL(s, [Fz) [17]. In [lo], we discuss the connection between this image and the 

excess of the Steenrod operations S(k;f), and frame a conjecture which would permit 

the argument of [18] to prove the conjecture of [12] concerning this image. A stronger 

version of this conjecture appears in [ 1 l] and is equivalent to Conjecture 1.2 as stated 

in Section 1.4. In order to state our present results without introducing further notation, 

we recall here the original statement of the conjecture: 

Conjecture 1.2 (Weak version). Let f be a positive integer. Then for all positive 
integers k we have 

ex($(k;f)) = (2k - l)ex(iq(f)) (= (2k - l)ex(&l; f))). 

Theorem 1 .l will imply 

Theorem 1.3. Conjecture 1.2 is true for f satisfying 2” - (A + 2) 5 f < 2” - 1 for 

some A > 0. 

We also prove that 

Theorem 1.4. One of the inequalities of Conjecture 1.2 is true for all f; 

ex(f(k; f )I I @ - 1 )ex(&(f 1) 

for all k, f > 0. 
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In the remainder of this section, we introduce enough notation to state Conjecture 1.2 

in full. 

1.2. E-notation for admissibles 

Denote by Y the set of finite sequences of non-negative integers. We define the 

dimension of an element S = (st, ~2,. . .,s,) E Y to be JS] = Cisi(2i - l), its length 

Z(S) = n, and its excess ex(S) = cisi. 

For our purposes, it will be convenient to parametrize the admissible basis in 

terms of the numbers si = ai - 2ai+t, the contributions to excess at each stage. That 

is, given a sequence S = (st , . . . ,s,) E Y, we define the admissible element E(S) = 
Sq(al)...Sq(a,) where a, = s, and ai = 2ai+l + si for 1 5 i 5 n - 1. For exam- 

ple, if S = (0,. . . , 0, f), then E(S) = S(j; f) as defined in Section 1.1. We have that 

ex(E(S)) = ex(S) and IE(S)l = ISI. 

1.3. Elements of minimal excess 

We now single out particular basis elements in each degree. Given a positive integer 

f, we denote by &f) the least excess of all sequences in 9 of dimension f. Let 

A(f) = max{l: 2” - 1 < f}. In [14], Singer observes that for any f there exists a 

unique sequence RI(f) = (ri , . . . ,r~(r)) E 9 of dimension f such that ri < 1 for 

all i, except that the first non-trivial ri is < 2; this sequence has ex(Ri(f)) = p(f). 

The corresponding admissible element E(Rl(f)) is thus of minimal excess among all 

elements of the admissible basis in dimension f. 

The sequence RI(f) may be constructed inductively by increasing the A(f)th entry 

of Ri(f - (2”(f) - 1)) by 1. 

Example. We have 

RI(2” - l)=(O )...) OJ,, 

I( 0 ,...9 o>“_~.+l’l,l Y..., All , 
> 

2LjIk 

R1(2” -j)= l,l,..., 1 

i( ) 

n-1 ’ 
j=n+1, 

[(,J ?...> J, 
Consequently, 

JY 
p(2”-j)= A-1, j=A+l, 

(. 

j I 4 

‘4 - 2, j=A+2. 

j=n+2. 
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For k 2 1, let Z&(f) = ((2k - l)~-i,(2~ - 1)~ , . . . , (2k - l)r,r(f)). Then &(f) and 

the corresponding admissible basis element E(&(f)) have dimension (2k - 1)f and 

excess (2k - l)p(f). 

I. 4. Results 

As we shall see in Section 3.3, the admissible element E(Rl(f)) appears in &r(f) = 

$( 1; f), and so ex($l; f)) = p(f). Conjecture 1.2 below purports to generalize these 

phenomena to k > 1. 

Conjecture 1.2 (Silverman [ll]). Let f be a positive integer. Then for all positive 

integers k we have 
(i) the element E(Rk(f )) is a (non-trivial) summand in the admissible-basis repre- 

sentation of $(k;f), and 
(ii) its excess is minimal among all such summands, so that ex(&k; f )) 

= ex(E(Rk(f ))) = (2k - l)p(f ). 

In this paper, we prove the following theorems: 

Theorem 1.3. Conjecture 1.2 is true for numbers of the form f = 2” - j, 1 5 j 5 

A + 2. 

Theorem 1.4. Part (i) of Conjecture 1.2 holds for all pairs (f, k) of positive integers, 

and consequently ex(&k; f )) 5 (2k - l)~( f ). 

2. Hopf algebras 

Recent work on nilpotence in &* has exploited the “stripping” action of the dual 

Steenrod algebra &‘* on JZZ* itself [7, 161. In this section, we identify the stripping 

action as a general Hopf algebra phenomenon. I thank Bill Schmitt, Grant Walker, and 

Reg Wood for elucidating this point of view. 

Let A* be a Hopf algebra over a field K with diagonal A*, multiplication $*, and 

conjugation x [6]. We continue to write 20 as 6 or 3 depending on the typographical 

complexity of 8. Let A, be the dual Hopf algebra and write (, ) : A, 18 A* + K 
for the inner product. In what follows, yi E A,, 0, E A*, A*8 = C 0’ @ 0” and 

&y = c y’ @ y”; we write 01e2 for $*((I, @ e2) and yly2 for A,(yl ~3 y2). 
There is a natural action of A, on A* in which y E A, acts via 

* 
D(y):A* LA*@A * ‘@r;) A* 

(1) 

Following [ 1, 161, we refer to D(y) as the operation of stripping by y. Evidently 

D( yi + ~2) = D( yi ) + D( ~2); coassociativity of A* gives D( yi y2) = D( yi ) o D( ~2). 
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Let 9 = {D(y): y E A,}. Define the maps 

x:9+9, D(Y) I-+ W); 

A,:9@9-+9, NYI > @ D(y2) H @UYI @ ~2)); 

qL :9+~ca9, D(Y) H (D @ D)(4*Y) = CD(Y’) @WY”). 

Henceforth we write 6(y) for x(D(y)). If A* is cocommutative, a determined chase of 

the defining diagrams (see for example Sections 4 and 8 of [6]) reveals the following 

three equations: 

D(Y) O +* = 4* O (4*D(Y)), 

i.e. D(y)(Bi&) = C&y’)& . D(y”)&. 

B(y) = x 0 D(y) 0 x, i.e. B(y)0 = D(y)J. 

h(Y) O 4* = 4* O ((x @ X)V*D(Y)), 

(2) 

(3) 

i.e. &y)(f&&) = C&y”)& . B(y’)&. (4) 

In Sections 3 and 4 below, we discuss the stripping action in the case where A* = 
sf*, the mod-2 Steenrod algebra. 

3. The Milnor basis 

3.1. Notation 

The dual Hopf algebra ,rQ* of d* is a polynomial algebra over lF2 on generators 

& in dimension 2’ - 1, 1 5 i < CXI [SJ. For S = (~1,. . .,s,) E 9, write r(S) for the 

monomial l”, 1. .tc ; evidently the dimension of this monomial is Ci si(2’ - 1) = IS]. 

The Milnor basis of d* itself is the basis dual to the monomials in the ti; we denote 

the dual element to r(S) by M(S). Then ]A4(S)] = IE(S)l and ex(M(S)) = C.si = 

NW)) [31. 
In [8], Monks shows that for all S E 9, each of E(S) and M(S) appears in the 

representation of the other in the appropriate basis. Moreover, the difference 6(S) = 

E(S) - M(S) satisfies ex(G(S)) 2 ex(S) and also 6(S) cE E(S), 6(S) cM M(S), 

where <E and KM are the orderings induced on JZZ* by the right-lexicographical 

ordering of Y relative to the admissible and Milnor bases respectively. This justifies 

the current admissible version of Conjecture 1.2, which was originally stated in terms 

of the Milnor basis [l 11. 

3.2. Length of a Steenrod operation 

Recall from Section 1.2 that the length of a sequence S = (~1,. . . ,s,) E 9’ is n. 
Given 8 E J#, define its admissible length (resp. Milnor length) by 

Z,(e) = max{l(S): e = CE(S)} (resp. l,(O) = max{l(S): 8 = CM(S)}). 
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It follows from Monks’s result that Z,(e) = 1*(e) for all 0. Denote this common 

value by l(tI), the length of 8. 

3.3. Conjugation in the Milnor basis 

The canonical antiautomorphism x has the property that for all positive integers f, 

the element &(f) is the sum of all Milnor basis elements M(S) of the appropriate 

dimension [5], and consequently, as indicated in Section 1.4 above, we have 

ex(ljq(f)) = ex 

( ) 

c Sq(S) = P(f). 
ISl=f 

(5) 

3.4. Stripping in the Milnor basis 

The diagonal homomorphism A* in d* is determined by 

A*M(S) = c M(S’) @ M(S”), 
S’ +Y=s 

where addition in 9’ is componentwise [5]. It follows from the defining equation of 

stripping (1) that 

where the right-hand side is understood to be 0 if si < ri for any i [4]. In particular, the 

stripping operations D(QR)) do not increase length, and stripping by a basis element 

of excess e decreases excess by no more than e. 

Since LZJ’* is commutative, we have D(y)oD(y’) = D(y’)oD(y) for all y, y’ E A+‘*. 

4. Stripping in the admissible basis 

4.1. General formula 

In this section we discuss the action of D(&) on the (not necessarily admissible) 

product Sq(al ) . .-Sq(a,) (cf. [l, 161). For n > k, define ?$ to be the set of all se- 

quences (ur , . . . , v, ) in which the non-zero elements form exactly the subsequence 

(2k-1 , . . . ,2,1). For example, Vs,z consists of (0,2,1), (2,0,1), and (2,1,0). For n < k, 
define vnn,k = 0. 

It is readily verified, using (2) and induction, that 

In the special case k = n, we find that 
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Corollary 4.2. (i) If Sq(a,) . . . Sq( ak is admissible and has excess e, then ) 

D(~k)(Sq(al)‘.‘Sq(ak))=Sq(Ul -2k-‘)‘e.Sq(ak_l - 2) ‘Sq(ak - I), 

which is admissible and has excess e - 1. 

(ii) In particular, D(&)s(k; f) = S(k; f 

In view of (3) and Part (ii) of Corollary 

&tk)&; f) = &; f - 1)~ 

- 1). 

4.2, we have 

(7) 

which permits the proof of Theorems 1.3 and 1.4 by downward induction in 

Sections 6 and 5 respectively. 

4.2. The stripping operation fi(<k) 

Conjugation in &pl* is determined by 

where Part(k) is the set of sequences a = (~1,. . . , a,(,)) of positive integers whose sum 

is k, and where oi(a) = xili aj [5]. It follows that 

for all 0 E zZ*. 

Consequence 4.3. (i) Stripping by & decreases excess by no more than 2k - 1 = 

ex( <f-l ). 

(ii) Since D(&)(Sq(f)) = 0 for 1 > 1, we have 

@tk)‘%(f) =&$-l&(f) = s&f - (zk - 1)) 

for all f and k. 

In Section 4.3, we generalize Part (ii) of Consequence 4.3 with a formula partially 

describing the effect of &cl:) on s(A; f) for A,j 2 2. 

4.3. Stripping S(A; f) by $ 

Lemma 4.4. For any 0 E XI*, we have &&)[S(2;f). e] = Sq(2f). [d(&)sq(f). e]. 
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Proof. The comultiplication in &* is given by &(&) = X:=0 rf_j @ tj [5], and 

consequently (4) implies 

j=l 

Since &<j)%(2f) = Sq(2.f - (2j - 1)) = fi(5;_1)Sq(2f - 1) by Part (ii) of Conse- 
quence 4.3, we have 

fi(M[S(2; S) .e1= M2.f) . mcmu) * 01 

= w2f) . u%bdadf) . ei + &r;_1 )[sqpf - 1) . sq(f) . e]. 

But Sq( 2f - 1) . Sq(f) = 0, proving the lemma. 0 

Proposition 4.5. For A > 2 and for any 6’ E d*, 

&mw; f) . ei = w - 1; u-1. &wm-)~ 01. 

Proof. The proof is by induction on .4. The case A = 2 follows from the proof of 

Lemma 4.4. Suppose that the result is known for _4 - 1. Then 

&w(~; f) . ei 

= k@<j)S(2; 2”-2f) . B(C;z_j)[s(A - 2; f) ‘01 (by (4)) 

j=O 

= eW2A-1f) * [E(5j)&(2”-2f)] f @$1j)[s(A - 2; f).e] (Lemma 4.4) 
j=O 

= sq(2”-lf). B(rk)[s(n - ~;f). e] 

‘2 Sq(2”-lf) . s(n - 2; 2f) . &)[sq(f) . e] 

= s(n - 1; 2~) . bgk)[sq(j-) . e]. 0 

Next we generalize Proposition 4.5 to show that applying 8((k) to s(A; f) a total 

of j times affects only the right-most j places: 

Proposition 4.6. B(th)S(A; f) = ,S(n - j; 2jf) . d(@(j; f). 
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Proof. Proposition 4.5 gives the case j = 1. Suppose that the result is known for j’ < j 

and all A’, and for j and LI’ < A. We have 

SC<:) s(n; f) = &<!f) [N$‘)&% “01 

‘yB(&) [S(A-(j- 1);2j_lf).Ij(5h-‘)s(j- l;f)] 

= s(n - j;2jf) .lj(&)[Sq(2j-‘f) .S($l) S(j - l;f)] 

(Proposition 4.5) 

‘gs(n - j;2jf).B($)S(j;f). q 

4.4. Application 

In [lo], we prove the following conjugation formula, which grounds the inductive 

proof of Theorem 1.1: 

Theorem 4.7 (Silverman [lo]). For all positive integers k and A, we have $(k; 2” - 1) 

= S(A;2k - 1). 

Stripping both sides of this equation by &, using (7) on the left and Proposition 4.5 

on the right, we find that 

Since fi(5k)Sq(2k - 1) = Sq(0) = 1 by (6), we find that 

&k;2(2”-’ - 1)) = s(z4 - 1; 2(2k - l)), (8) 

a formula conjectured in [lo] which is a special case of Theorem 1.1 below. As a 

consequence, we see that &k; 2(2” - 1)) and &k; 2” - 1) are both of length exactly 

A, where length is as defined in Section 3.2. 

Recall now from Section 3.4 that stripping operations do not increase length. The 

result below, conjectured in [ll], follows by a sandwich argument from (7) and the 

conclusion of the previous paragraph. 

Theorem 4.8. Zf 2” - 1 I f < 2”+’ - 1, then the elements $(k; f) are of length 
exactly A independently of k. 

5. Proof of Theorem 1.4 

We are now ready to prove 

Theorem 1.4. Part (i) of Conjecture 1.2 is always true, and consequently for all 
f 2 1 we have ex(&k; f )) 5 (2k - l)p( f) for all k 2 1. 
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Proof. The cases f = 2” - 1 and f = 2(2” - 1) follow from Theorem 4.7 and (8) 

respectively. We assume inductively that the result is known for f 5 2” - 1 and prove 

it for 2” 5 f < 2(2” - 1). Observe that 

d($-’ )@;2(2” - 1)) = L&2” - 1) (7) 

= S(11;2k - 1) (Theorem 4.7) 

= D(r;-‘)S(n; 2(2k - 1)) (Corollary 4.2 (ii)) 

= D(5;-‘)$(k;2(2” - 1)) (Theorem 4.7), 

i.e., B( $-’ ) and D(L$‘) agree on &k;2(2” - 1)). Moreover, since stripping op- 

erations commute with each other, these two operations also agree on all elements of 

the form D(y) $k; 2(2” - 1)). In particular, they agree on 

5?(k; f) = fi@^-“-f) 4(k; 2(2” - 1)) 

for all f 5 2(2” - 1). Thus by (7) we have 

D(L$‘)S(k; f) =s&-* )S(k; f) = S(k; f - (2” - 1)). (9) 

By Theorem 4.8, all admissible elements appearing in $(k; f) have length 5 A, as 

those in &k; f - (2” - 1)) have length 5 _4 - 1. By Proposition 4.1, those in $(k; f) 
of length < A vanish when stripped by [f-l. By Part (i) of Corollary 4.2, those of 

the form E(ri,..., 1;1) either vanish (if rA < 2k - 1) or map to the single admissible 

element E(rl,. . . , rA_l,rA - (2k - 1)). Therefore (9) implies that the map 

E(q )...) s&i) H E(q )...) sn_1,2k - 1) 

assigns to each admissible summand of &k; f - (2” - 1)) an admissible summand of 

$(k; f) of length n with last entry 2k - 1. Since by assumption E(&(f - (2” - 1))) 

appears in L?(k; f - (2” - I)), we find from the inductive construction of Ri( f) and 

the definition of &(f) in Section 1.3 that indeed E(&( f )) appears in $k; f ). As the 

excess of E(&(f )) is (2k - l),~~(f ), this completes the inductive step in our proof. 0 

2. Proof of Theorems 1.1 and 1.3 

We now apply results of Section 4.3 to prove Theorems 1.1 and 1.3, restated below 

for convenience. We will make use of the following observation, immediate from the 

definition of excess and the Adem relations governing multiplication in d*: 

Observation 6.1. If a E N and Sq(a) .8 has degree d, then ex(Sq(a) . 0) 2 2a - d. 

Theorem 1.3 for f = 2” - 1 is an immediate consequence of Theorem 4.7, which 

states that L?(k; 2” - 1) = S(n;2k - 1) for all k and LI, generalizing a result of [2] 
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to k > 1. Theorem 1 .l, from which the rest of Theorem 1.3 will follow, likewise 

generalizes another result of [2]: 

Theorem 1.1. i(k; 2” - j) = S’(A - (j - 1); 2j-1(2k - 1)). $k; 2j-1 - j) for 1 1. j 

5 A. 

Proof. For such j, we have 

&k;2” -j) = Dj-‘(&)S(k;24 - 1) (Corollary 4.2 (ii)) 

= rj($-‘)$(k; 2” - 1) (by (3)) 

= fi($t)s(~I;2~ - 1) (Theorem 4.7) 

= S(A - (j - l);2i-‘(2k - 1)) .rS($-*)S(j - 1;2k - 1) 

(Proposition 4.6) 

= s(A -(j - 1);2i-1(2k - 1)).lj(5h-‘)$(k;2i-’ - 1) 

(Theorem 4.7) 

= s(A-(j- l);2i-‘(2k- l)).$k;2j-r-j). 0 

Before recalling the statement of Theorem 1.3, we recall from Section 1.3 that 

J, 

1. 

j I A, 
p(2”-j)= A-1, j=A+l, (10) 

‘4 - 2, j=A+2. 

We are now ready to prove 

Theorem 1.3. Conjecture 1.2 is true for all f satisfying 2” - (A + 2) 5 f 5 2” - 1 

for some A 2 0. 

Proof. By Theorem 1.4, we need only show that for 1 5 j 5 A + 2, we have 

e&k; 2” - j)) > (2k - l),u(2” - j) 

for all k 2 0. If 1 5 j 5 A, then by Observation 6.1 and Theorem 1.1 we have 

ex($(k; 2” - j)) 2 2 .2”-j . 2j-1(2k - 1) - (2k - 1)(2” - j) 

= (2k - 1)[2” - (2” - j)] 

=(2k - l).j 

= (2k - 1)~(2” - j) (by (10)). 

The result for j = A + 1 and j = A + 2 follows from the case j = A and Part (i) of 

Consequence 4.3. Cl 
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